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ABSTRACT

Small-sized and micro-robots will soon be available for
deployment in large-scale forces.  Consequently, the ability
of a human operator to coordinate and interact with large-
scale robotic forces is of great interest.  This paper
describes the ways in which modeling and simulation have
been used to explore new possibilities for human-robot
interaction. The paper also discusses how these
explorations have fed implementation of a unified set of
command and control concepts for robotic force
deployment. Modeling and simulation can play a major
role in fielding robot teams in actual missions. While live
testing is preferred, limitations in terms of technology,
cost, and time often prohibit extensive experimentation
with physical multi-robot systems. Simulation provides
insight, focuses efforts, eliminates large areas of the
possible solution space, and increases the quality of actual
testing.

1 INTRODUCTION

Advances in robotics will soon give rise to the
development of a diverse array of small to miniature robots
capable of autonomous travel through air, sea, and on land.
Coupled with advanced sensor and transmission
technologies, these units have tremendous potential for
intelligence gathering applications, especially in filling
current gaps in intelligence collection in times of peace and
of conflict.   A key element, however, in the transition
from tabletop development to field deployment is the role
of the human operator and the necessary interaction
between the robotic force and human during the mission.
The successful use of large-scale numbers of robots in field
applications depends on the ability of human operators to
exchange information, provide direction, and gain an
understanding of force intent and operations at both micro

and macroscopic levels.  The introduction of large-scale
forces of autonomous/semi-autonomous robots adds a new
dimension and, likewise, new challenges to effective
human-machine interaction.  Some of the challenges which
need to be addressed include operator situation awareness,
data representation, and system automation.

This paper begins by presenting a vision for future
micro-robotic deployments and examines some relevant
human-robot interaction issues.  Next the paper describes
the role of simulation and modeling in developing concepts
for a prototype command and control system for robotic
force deployment. Finally, the paper describes the
development of AgentSim, a simulation framework for
evaluating command and control (C2) architectures for
human-robot interactions developed under a joint Idaho
National Engineering and Environmental Laboratory
(INEEL) and Defense Advanced Research Projects Agency
(DARPA) project.

2 BACKGROUND

2.1 Research Motivation

Although great strides have been made in technology, the
introduction of truly autonomous robotic forces into
military applications has yet to be realized.  Radio
controlled, tether controlled, and semi-autonomous robotic
platforms have been used by the military for surveillance
and intelligence.  The interaction with human operators has
been primarily on a one-to-one or a one-to-several (<10)
robot level. The potential for large-scale numbers (e.g.;
hundreds to thousands) of robots deployed as a collective
force represents tremendous capability in terms of area
coverage, redundancy, and time savings.  By the same
token, however, it presents a nightmare in terms of control
and monitoring of the collective.



This problem was identified some time ago and
remains an ongoing concern (Gage, 1992; Lee, 2000).
Although much work in the past few years has explored the
utility of distributed control concepts, little research has
been conducted to develop robust, scalable command and
control tools for interfacing humans with large-scale
numbers of robots. If distributed approaches are to be
deployed across military, humanitarian and commercial
domains, there is an acute need for further consideration of
human factors. Recent studies performed for the
Department of Defense indicate that one of the greatest
obstacles to the inclusion of autonomous mobile surrogates
within the battle-space is the need for operator confidence
(Halbert et al., 2001; Dudenhoeffer & Bruemmer 2001).
Systems that cannot provide appropriate task awareness
and system understanding will not be successfully
deployed. A simple example of this need is in the use of a
team of robots to search a minefield and clear or breach a
path for troop movement.  After the robots report that the
mission is complete, how confident are you in leading the
first squad along that path?

The monitoring and control of hundreds to thousands
of mobile robots demands significant effort in terms of
cognitive workload, specifically in the area of maintaining
battle-space or situation awareness (SA). Within the
greater sphere of command and control, much research has
been done to understand the need for situation awareness:
“the perception of the elements in the environment within a
volume of time and space, the comprehension of their
meaning and the projection of their status in the near
future” (Endsley, 1987).  The operator must not only
understand the robotics force in terms of where they are,
but s/he must understand what they are doing now and
what they will likely do in the near future.  SA is a critical
element in decision making, especially in highly dynamic
situations that are outside of normal operations. One
specific goal of the command and control system should be
to provide tools designed to minimize the operator's
cognitive workload in developing and maintaining
situation awareness of the battle-space.  A loss of situation
awareness will likely result in slower detection times,
slower reaction times, and possibly increase decision errors
as the operator struggles to re-orient him /herself with the
operational parameters.

The envisioned robotics force can act autonomously
and yet must be responsive to user control at a variety of
levels.  Mission planning is the most important aspect of
their successful deployment.  However, once deployed, the
majority of operator interaction is devoted to monitoring
their status and conducting minor changes to the original
mission plan as the system operate autonomously.
Research has indicated that in activities with high level of
automation in which an operator serves mainly in a
monitoring role, situation awareness may be negatively
impacted.  It has been hypothesized that this may result
from: (1) a loss of vigilance as the operator assumes a

monitoring role, (2) the shift from the operator being an
active processor of information to that of a passive
recipient, or (3) a loss or change in system feedback
concerning the state of the system (Endsley & Kiris, 1995).
As the degree of automation increases, it becomes more
difficult for the operator to understand the underlying state
of the system.  This ability to track and anticipate the status
and behavior of the automated system is referred to as
mode awareness (Sarter & Wood, 2000). In the case of the
robots, this lack of understanding is evident by the “Now
why are they doing that?” response.

Studies on situation awareness and the effects of
automation have focused on air traffic control crews,
airline pilot crews, and nuclear power plant crews.
Gawron (1998) provided some of the first data on these
issues in regards to robotics with her research on the
human-machine problems associated with the deployment
of Uninhabited Aerial Vehicles (UAVs).  Some of the
relevant human-user interface problems identified are:

1. Data link drop-outs were not always apparent to the
operator and the UAVs traveled beyond the data link
and control range of the operators

2. Operators had trouble maintaining vigilance over long
periods of time during UAV missions of 3.5 to 40
hours

3. Humans could process imagery exploration on only a
single data stream at a time, but several UAVs
collected two simultaneous data streams

4. Operators had difficulty controlling vehicles when the
systems possessed significant time delays in the
control system.

The focus of our research is the exploration and
development of mechanisms and user tools, which can
alleviate these problems. Modeling and simulation have
played a key role in this research and development.

2.2 Required C2 Functionality

Command and control for large numbers of autonomous
agents represents a unique situation for a human operator.
In some instances, it resembles an air traffic controller
trying to monitor and coordinate the movements of a large
number of aircraft.  In other cases, the operator assumes a
role much like that of a sonar operator on a submarine,
who in monitoring a vast array of sensors is constantly
trying to optimize the sonar system performance to identify
that one piece of information in a vast ocean of noise.

The functional requirements for autonomous systems
control were discussed at a 1998 national technical
workshop sponsored by the DOE and the DOD.  Figure 1
illustrates the roles / functions that a supervisor of an
autonomous system must meet.  It also indicates some of
the functional elements for command and control systems
(DOE, 1998).



Of these functional requirements, planning is the most
critical due to the autonomous nature of the robots.  After
deployment, however, most of an operator’s time will be
spent in a monitoring mode.  It is also in the planning
phase that the impact of simulation is greatly seen.
Through this planning phase, decision-makers build
expectations about the system’s execution, including how
the robots should perform and the anticipated response to
unexpected stimuli.  Additionally, through simulation,
emergent behaviors become evident which are exceedingly
difficult even for the system designer, much less an
operator, to predict. Emergent effects are dependent on the
environment, the number of robots and the elements of the
task at hand. They arise from a multitude of subtle
interactions and yet can have a devastating effect on the
overall system performance.  Before we even began
implementation of a real robot team, simulation alerted us
to fundamental problems that we would face.

As stated earlier, SA plays a large part in the decision
process.  SA is closely tied to a person’s mental model of
the systems operation. More precisely mental model can be
defined as “the mechanism whereby humans are able to
generate descriptions of system purpose and form,
explanations of system functioning and observed system
states, and predictions of future system states.” (Rouse &
Morris, 1986, p.351)  The simulation allows the operator
the opportunity to develop a mental model.  This mental
model provides a basis for the operator to recognize and
deal with unplanned or unexpected behavior.  Three
generic situations may emerge from the actual deployment.
The first is performance of the robots as planned.  In the
second situation, the robots do not perform as desired, but
the cause is known and the behavior can be altered to
mitigate the effects.  The third and most devastating case,
especially in terms of its effect in eroding user confidence,

is when the robots act in a totally unpredicted manner and
the cause cannot be determined. Effective simulation can
help alleviate this third possibility, removing uncertainty
and confusion both for a developer in the process of
implementing a robotic system and for an operator who
must plan and coordinate a robotic task.

2.3 Existing C2 Architectures for Distributed Robot
Control

As stated earlier, this effort represents one of the first
research projects which examines and attempts to develop
a multi-agent human command and control tool for large-
scale numbers of robots.  Dr. Douglas Gage (1992) initially
explored the area of large-scale multi-agent command and
control, but despite a great deal of recent work with multi-
robot systems, little emphasis has been placed on
command and control for large-scale robot populations.
Several command and controls systems have been
developed to support small forces of robots (4 -15). The
most notable systems include MissionLab, Demo III, and
the United States Air Force’s Uninhabited Combat Air
Vehicle (UCAV) command system.

Developed at Georgia Tech under the auspices of the
Tactical Mobile Robotics (TMR) program, MissionLab is
able to greatly facilitate the process of designing,
developing and deploying robotic systems (Arkin, 1998).
Demo III is a DOD sponsored program to develop and
demonstrate small autonomous ground vehicles.  The
primary operator interface is through Operator Control
Units (OCU).  The system facilitates mission planning,
task execution, and re-tasking through a Windows-like
map based interface (Morgenthaler et al., 2000). The
objective of the Uninhabited Combat Air Vehicle (UCAV)
command system developed by the United States Air Force
is to provide an interface mechanism for controlling
multiple UCAVs in coordinated mission execution.  The
operator is responsible for establishing mission goals,
monitoring system status, and refining task execution
(Barbato, 2000).

At the present time, there is still a great deal of work
to be done in order to enable effective command and
control for large numbers of robots.  While the systems
described above are effective with small numbers of
robots, (e.g., 1–4), they do not support levels of force
abstraction necessary to control large numbers of robots.
The ability to create abstract levels of control, i.e. groups
and units, is a key element in permitting human operator
“one to many” control of large numbers of robots.  Another
key ability for an operator to have is an adjustable level of
influence over the deployed force. Flexible interfaces and
architectures must keep the operator in the loop, provide
understanding, cognizance and opportunities for
involvement while at the same time filtering and
coalescing information so as not to overload the operator
or require interaction with each individual robot.

Operator / Supervisor of 
Autonomous Systems

Coordination

Termination

Intervention

Initiation

Monitoring

Preparation

Planning

Figure 1: Functional Requirements



2.4 Hierarchical Structures

Drawing both from the dominance and caste societies that
exist in biological systems, a hierarchical system of
command and control was selected as the first model for
evaluation.  The hierarchical system consists of an
organizational structure with various levels of control
between units within the organization.  A “chain of
command” exists within the organization, which dictates
the relationship between levels units.  The military is the
most common example of a hierarchical structure.  Figure
2 illustrates the basic construct of the hierarchy.  In this
case, the individual soldiers consist of the base element of
the structure.

Soldiers are grouped into units, which possess a unit
leader, units into squads, etc.  Command and control using
a hierarchical framework reduces system complexity by
allowing the user to interface with individual soldiers at a
high level of abstraction.  Command and control is
achieved along organizational lines and not by a one-to-
one correspondence. Two methods exist for
implementation of a hierarchical-based structure.  The first
involves the specific designation of group membership for
individuals.  The second involves the designation and
control through a leader around which a following
develops.

2.4.1 Group Abstraction

Hierarchical structures can be developed through operator
designation of groups.  Here the operator designates the
hierarchy by explicitly choosing group membership.  The
operator may make this choice based on proximity or
based upon functionality.  The operator may want to

establish a certain functional capability among a non-
homogenous collection of robots.  The key is that the
operator specifies group membership.

This type of hierarchical structure has strong roots in
biological societies that exhibit a dominance ordering
among members.  This dominance order consists of a set of
sustained aggressive-submissive behaviors among
members of the society.  In the simplest form, this consists
of rule by one individual; despotism.  In many cases,
however, it consists of a hierarchy among members with
rank distinction.  Here an alpha individual dominates the
society; a beta dominates all but the alpha, down to the
omega at the bottom of the line. In these societies,
dominance is normally based on size, strength, and
aggressiveness (Wilson, 2000).

2.4.2 Group Leadership

The second method of implementing a hierarchical
structure is through dynamic group formation.  In this
model, the human user does not select the group, but rather
selects individual leaders from among the masses.
Commands are issued to these leaders who in turn invoke a
following among the collective.  Group membership is not
predefined, but is a function of the “charisma” of the
leader.

Leadership in the animal kingdom commonly refers to
the simple act of physically leading other group members
during movement from one location to another.  In this
case, the movement leader is not necessarily the dominant
member of the group.  The leader of the group may change
as circumstances warrant such as the discovery of a
predatory threat (Wilson, 2000).   This type of control has
applications when combined with a subsumption-type
layering of behavior.  In this regard, a leader may attract a
following of “unemployed” robots.  Other robots engaged
in meaningful activity would not be compelled to follow
the leader.  Additionally, followers could break off from
the group if stimulated to perform a higher level action.

Once a leader is designated, the question is how to
communicate and instill group action?  Nature again
provides some interesting examples.  Birds commonly use
a combination of body gestures and audible sounds to
signal intent.  The honeybee does the waggle dance to
indicate the direction and distance to a target.  Another
form of leadership found in honeybees produces an
autocatalytic reaction.  This form of action initiation is
called the buzzing run, the breaking dance, or Schwirrlauf
which honeybees use to induce swarming.  In this method
“...one or several bees begin to force their way through the
throngs with great excitement, running in a zigzag pattern,
butting into other workers, and vibrating their abdomens
and wings...” (Wilson 2000, p.213).  This action incites
other worker bees to perform in the same manner and soon
most of the collective is effected.  After about 10 minutes,
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Figure 2: Hierarchical Command Structure



the bees nearest the opening depart and the frenzied
collective follows.

The ways by which a leader can influence the
collective can therefore be grouped into at least the
following four styles.
1. Leadership by example –  The imitation of the leaders

actions by the collective, i.e.,  follow the leader
2. Tasking by explicit order – The issuance of direct

communication from the leader to subordinates to
signify action.

3. Tasking by a preprogrammed response to a leader's or
other member’s actions – Not necessarily an imitation
behavior, but a response to actions by the leader which
results in a cascading effect.

4. Any combination of the above.

Just as in the animal kingdom, multi-robot systems
require hierarchical control architectures and some means
for this hierarchical structure to be realized through an
implementation of “influence” as described above. The
following section discusses how modeling, simulation and
real-world implementation have provided a means to
explore social potential fields as an answer to these issues.
The ability to modulate social behavior and instill
hierarchical structure provides the key to enabling
appropriate command and control for a team of multiple
robots.

3 SIMULATION DEVELOPMENT AND
VALIDATION

3.1 System Design

As a means to study human interface requirements and to
prototype command structures, the INEEL developed a
command and control suite called AgentCommand.  Figure
3 represents the major elements behind AgentCommand

and the basic concept.
AgentCommand represents a modular command and

control system for the deployment of autonomous robots.
It consists of three major elements:
1. AgentSim is a simulation driver that can be utilized for

robot behavior development, deployment planning and
strategy, and course of action (COA) evaluation.  It
presents a global view of all simulated agents.  It can
also used as a source of simulated input for testing and
training with AgentHQ and AgentCDR.

2. AgentCDR is an operator control unit (OCU) for in
field use.  It is the main human robot interface
mechanism for monitoring and C2 for individual or
large-scale numbers of agents.  AgentSim can also
provide simulated input.

3. AgentHQ is a centralized command center that permits
a high level overview of agent operations.  It interfaces
with in field AgentCDR modules. AgentSim can also
provide simulated input.

A team of “Growbot” robots by Parallax served as the
basis for simulation in AgentSim and was also the test-
platform for integration with AgentCDR.  Figure 4 shows
part of our team of robots. Each robot possesses a behavior
set layered in a subsumption style layering. The robots
react to the environment and retain very little state
knowledge.

3.2 C2 System

Confident that the simulation, while not perfect, provided
useful insight, the next step was to develop and evaluate
command and control structures for robot force
deployment.  Specifically, we implemented a hierarchical
structure, which permitted operator control at an individual
robot level, but also allowed control through abstract
groupings.  AgentSim then served as the test bed for
development and evaluation.

3.2.1 Control at the Individual Level

Figure 5 illustrates the ability to query and view individual
robots.  In this case robots 287 and 340 are selected.  The
individual robot window displays the system states

Figure 3: AgentCommand C2 Suite

Figure 4: The INEEL Robot Team



including type, position, heading, wander direction, and
state.  The time of death is part of the simulation based on
an exponential life expectancy function.

The operator is presented two sets of controls.  The
first type of control does not affect the robot, but provides
a means for the operator to view and organize information.
Two separate controls of this type exist:
1. A control which allows the operator to remove (hide)

information from the viewing screen.  This allows the
operator to customize a view for focus on a certain
area or task while minimizing distracting information.

2. A control which traces the movement path of the robot
to assist the operator in understanding behavior and to
also track coverage.

The second type of control consists of commands to
the robot for behavior modification.  These include:
1. Robot type selection.  As stated earlier, hierarchical

structures can be implemented in multiple ways.  One
method is by operator grouping; the second is by
leadership designation.  This control allows the
operator to designate a robot as a soldier or as a
commander.  The change of state to a commander
modifies the way neighboring robot react.  In this case,
a commander imparts a greater attractive force than
that exerted by a soldier.  Thus a commander is able
collect a following of robots.

2. Wander heading.  This displays the robot's desired
heading subject to the effects of external stimuli.  This
may be predetermined or a random function.

3. Robot state.  This allows the operator to suspend or
activate an agent.

Figure 5 also illustrates two visual aids designed to
enhance the operator’s situation awareness and
understanding.  These include an adjustable grid overlay to
provide the operator a geospatial sense of individual and
collective movements.  This can be useful in alerting the

operator when “out of area” conditions are about to occur.
Another feature is the display of “dead” robots.  In this
case a dead robot represents a robot known to been
terminated, or with which communication is lost and
cannot be re-established.   The open squares on the display
represent ”dead” robots.  The operator may wish to
investigate or avoid an area with a high mortality rate.
Although this system emphasizes the need for appropriate
user input, the system is designed to support a variety of
machine learning approaches that can permit autonomous
adaptation. For instance, online learning capabilities could
permit members of a group to self-adjust their behavior,
responding online to significant events such as catastrophic
loss of members or physical areas of high mortality.

3.2.2 Control at the Group Level

The C2 level of abstraction immediately above individual
control is group control.  The interface for Group control
and designation is illustrated in Figure 6.  Groups permit
the designation, selection, tasking and re-tasking of
multiple agents by a single operator. A colored ring
surrounding the robot identifies group membership.  The
operator uses the mouse to designate membership in a
group.  Selection is made individually or by circling a
collection of agents.  Group controls are similar to those
for individual robots and include display (visualization)
and operational controls.

Visualization controls allow the operator to custom-
configure the information presentation to best fit his/her
needs.  These controls include:
1. Group name.  The operator can give the group a

meaningful name beyond the default name.
2. Group radius and color.  The operator can modify the

appearance of the group by specifying the ring color
and size. This supports SA by incorporating pattern
recognition into the display.

Figure 6: Group Level Interaction

Figure 5: Individual Robot Interaction



3. Group visibility.  The operator can remove a group
representation from the viewing screen.  This permits
the operator to focus attention while temporarily
removing potentially distracting data from the display.

Behavior modification controls include:
1. Group formation behavior.  The operator has the

ability to enable or disable this behavior among group
members.  Removal of this behavior removes the
potential field effect between neighboring robots.
Instead of being influenced by adjacent robots,
individual motion is along the goal heading, unless
otherwise modified.

2. Goal heading designation.  A spin wheel allows the
user to specify the group’s goal heading by selecting a
direction arrow.  The geospatial alignment is North at
the top of screen.

It should also be noted that robots can be members of
multiple groups simultaneously, as denoted by multiple
colored rings around the robot representation.  This ability
promotes flexibility for groups of multiple functionality
and also for distributed control among multiple operators.

3.2.3 Control at the Unit Level

Unit designation represents the highest level of control
abstraction, figure 7.  This level of abstraction gives
commanders flexibility in designating and re-assigning
assets to meet specific mission requirements.  Membership
can consist of groups and/or other units.  The display and

operational controls are similar to those for group and
individual control and include.
1. Unit name.
2. Unit color.
3. Unit visibility.

Behavior modification controls include:

1. Unit formation behavior.  The ability to enable or
disable this behavior among Unit members.

2. Goal heading designation.

Where as groups may be based on a collection of robots
with similar capability, the Unit may designed to contain a
specific capability mix of groups to support specific
mission profiles.  Within the interface is easy to
dynamically create and modify the Unit’s composition.

3. 3  Simulation Validation

While discussed primarily as a tool for operator planning
in this paper, the simulation driver, AgentSim, also
provided system designers with valuable insight into the
development of individual and group behaviors for the
team of robots.

Initial simulation trials demonstrated that social
potential fields could augment the general robustness of the
system; however, it also demonstrated the byproducts of
incomplete and imperfect sensing. One of the most
pertinent insights was that motion efficiency under social
potential force control is highly dependent on accurate
neighbor detection.  Motion efficiency is defined as the
ratio of net distance traveled to total motion. The
simulation showed that unless the social potential fields
could be appropriately maintained, motion efficiency
would greatly degrade. In the case of imperfect sensors the
robots alternately lost and regained nearest neighbor
detection resulting in an oscillation that wasted time and
energy. Dudenhoeffer and Jones (2000) contain these
results as well as a detailed explanation of the model’s
construction in the paper.

When social potential field behavior was implemented
in the Growbot robots, some of the same behavior was
observed.  As in simulation, social potential fields provided
a benefit in terms of movement efficiency and significantly
augmented performance on a real-world area coverage
task. However, the undesirable oscillatory behavior
predicted in simulation also manifested as a significant
feature of emergent group behavior. Specifically, if the
density of robots rose too high in a given region, the robots
began to exhibit the following undesirable emergent
effects:
1. Interference:
➣  Physical Interference: When density increases, robots

sometimes collided or became physically entangled
with one another.

➣  Chattering: A phenomenon whereby robots hem each
other in and, given sufficient obstacle and population
density, spin in place. Chattering wastes time and
energy, hindering exploration of new ground.

2. Redundancy: Robots tended to cover the same ground
as their peers and fall into “ruts.”

Figure 7: Unit Level Interaction



The field testing of the robots was necessary for model
validation, but it also demonstrates the drawbacks of such
testing.  Naked-eye observations told us little about the
effects of ongoing interaction. This drove the need for
some empirical, objective means to capture the benefits of
our adjustable social potential field interaction.  However,
one of the problems for gathering empirical data on the
behavior of robots has been the difficulty and cost
associated with using an accurate indoor positioning
system to capture displacement for multiple robots over
long periods of time. GPS is not suitable for such indoor
purposes and other indoor positioning systems either
require costly instrumentation (magnetic field beacon
technology, radio, etc.) or are vulnerable to drift (e.g. dead
reckoning). Besides, our robots were neither physically
large enough nor computationally powerful enough to
support sophisticated instrumentation or dead reckoning.
Rather than instrument a positioning system, we decided to
simply capture robot movement onto the environment.

For our purposes, we constructed an eight by eight
foot walled enclosure around a floor covering consisting of
large sheets of white-board.  Each robot was instrumented
with a Velcro sponge pad, which allowed us to securely
attach a dry erase marker to the rear of the robot.  Figure 8
illustrates the test-bed environment.

The marker provided a means to track the movements
and area coverage for the robots as they explored the
environment.  When trials involved teams of robots, each
was fitted with a different color marker to differentiate its
path from the other robots.  This novel approach provided
valuable “ground-truth” feedback on the precise
movements of each robot and the cumulative effect on the
resulting area coverage.  While effective, this testing
consumed tremendous time to conduct the trial runs.
Additionally, this setup was sufficient for the nine-member
robot team we tested, but would not be suited for large
teams of fifty to several hundred robots.

This experiment demonstrates the benefits of
incorporating simulation. While the simulation did not

reproduce every detail of the actual robot testing, it
provided crucial insight, such as a preliminary
understanding of the hard problems like how to provide
accurate sensing of neighbors and how to avoid the
problems of interference that occur when social interaction
is not properly controlled.

Another crucial benefit of simulation is that once
behavior was observed, it was quickly understood.
Especially when multiple robots are concerned, the
development process does not lend itself to astute
observations. To make matters worse, it is difficult to
capture data on large-scale robot interaction. For all of
these reasons, simulation can serve a useful role as
harbinger, alerting us to effects which are not obviously
apparent to the observer of a real robot team. The
understanding of social potential fields which we had
gained in simulation provided a bootstrap with which we
could attack the implementation problem. Even before we
turned to real robots, we already knew that our real-world
implementation must include some strategy to counter the
negative effects of social interaction and quickly found that
online learning could provide the necessary means.

4 CONCLUSIONS

The paper has presented the some of the relevant research
issues that must be addressed in the area of human-robot
interaction. Next the paper has discussed the roll of
simulation in exploring these issues.  Simulation presents a
valuable tool, not only in the development of robotics
systems, but as an ongoing human-user aid for planning
and providing system understanding.  Finally, this utility
was demonstrated through its implementation in
AgentSim, which served as a framework for developing
robot behaviors and prototyping command and control
designs for a team of small robots.

The next step is to evaluate the effectiveness of this
framework in supporting human-user requirements.
Specific areas of concern include situation awareness, the
effects of automation (mode awareness), and mental model
formation.  Human subject testing and the implementation
of the control scheme in actual robots are planned for the
near future.
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